Abstract
In order to realize many of the potential benefits associated with robotically assisted minimally invasive surgery, the robot must be more than a remote controlled device. Currently, using a surgical robot can be challenging, fatiguing, and time consuming. Teaching the robot to actively assist surgical tasks, such as suturing, has the potential to vastly improve both patient outlook and the surgeon's efficiency. One obstacle to completing surgical sutures autonomously is the difficulty in tracking surgical suture threads. This paper presents novel stereo image processing algorithms for the detection, initialization, and tracking of a surgical suture thread. A Non Uniform Rational B-Spline (NURBS) curve is used to model a thin, deformable, and dynamic length thread. The NURBS model is initialized and grown from a single selected point located on the thread. The NURBS curve is optimized by minimizing the image matching energy between the projected stereo NURBS image and the segmented thread image. The algorithms are evaluated using suture threads, a calibrated test pattern, and a simulated thread image. Additionally, the accuracy of the algorithms presented are validated as they track a suture thread undergoing translation, deformation, and apparent length changes. All of the tracking is in real-time. Note to Practioners: Abstract-The problem of tracking a surgical suture thread was addressed in this work. Since the suture thread is highly deformable, any tracking algorithm must be robust to intersections, occlusions, knot tying, and length changes. The detection algorithm introduced in this paper is capable of distinguishing different threads when they intersect. The tracking algorithm presented here demonstrate that it is possible, using polynomial curves, to track a suture thread as it deforms, becomes occluded, changes length, and even ties a knot in real time. The detection algorithm can enhance directional thin features while the polynomial curve modeling can track any string like structure. Further integration of the polynomial curve with a feed-forward thread model could improve the stability and robustness of the thread tracking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on automation science and engineering : a publication of the IEEE Robotics and Automation Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.