Abstract

Singing pedagogy has increasingly adopted guide awareness through the use of meaningful real-time visual feedback. Technology typically used to study the voice can also be applied in a singing lesson, aiming at facilitating students’ awareness of the three subsystems involved in voice production—breathing, oscillatory and resonatory—and their underlying physiological, aerodynamical and acoustical mechanisms. Given the variety of real-time visual feedback tools, this article provides a comprehensive overview of such tools and their current and future pedagogical applications in the voice studio. The rationale for using real-time visual feedback is discussed, including both the theoretical and practical applications of visualizing physiological, aerodynamical and acoustical aspects of voice production. The monitorization of breathing patterns is presented, displaying lung volume as the sum of abdominal and ribcage movements signals. In addition, estimates of subglottal pressure are visually displayed using a subglottal pressure meter to assist with the shaping of musical phrases in singing. As to what concerns vibratory patterns of the vocal folds and phonatory airflow, the use of electroglottography and inverse filters is applied to monitor the phonation types, voice breaks, pitch and intensity range of singers of different music genres. These vocal features, together with intentional voice distortions and intonation adjustments, are also displayed using spectrographs. As the voice is invisible to the eye, the use of real-time visual feedback is proposed as a key pedagogical approach in current and future singing lessons. The use of such an approach corroborates the current trend of developing evidence-based practices in voice education.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call