Abstract

AbstractPlasma etching is a semiconductor manufacturing process during which material is removed from the surface of silicon wafers using gases in plasma form. A host of chemical and electrical complexities make the etch process notoriously difficult to model and troublesome to control. This work demonstrates the use of a real-time model predictive control scheme to maintain a consistent plasma electron density in the presence of disturbances to the ground path of the chamber. The electron density is estimated in real time using a virtual metrology model based on plasma impedance measurements. Recursive least squares is used to update the controller model parameters in real time to achieve satisfactory control of electron density over a wide operating space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call