Abstract

A current challenge with human-machine cooperation systems is to estimate human motions to facilitate natural cooperation and safety of the human. It is a logical approach to estimate the motions from their sources (skeletal muscles); thus, we employed surface electromyography (SEMG) to estimate body motions. In this paper, we investigated a cooperative manipulation control by an upper limb motion estimation method using SEMG and joint angular velocities. The SEMG signals from five upper limb muscles and angular velocities of the limb joints were used to approximate the flexion-extension of the limb in the 2-D sagittal plane. The experimental results showed that the proposed estimation method provides acceptable performance of the motion estimation [normalized root mean square error (NRMSE) <0.15, correlation coefficient (CC) >0.9] under the noncontact condition. From the analysis of the results, we found the necessity of the angular velocity input and estimation error feedback due to physical contact. Our results suggest that the estimation method can be useful for a natural human-machine cooperation control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call