Abstract

AbstractThe rainfall threshold (RT) method is a nonstructural flood mitigation approach that is emerging as an effective flood forecasting tool. A critical RT value is the minimum cumulative rainfall depth necessary to cause critical water level or discharge at a cross section of a river. The major drawback of the RT approach is associated with the offline methods used for extracting critical RT values based on some fixed watershed characteristics and rainfall conditions. In this paper, a novel methodology is presented for real-time updating of RT curves for flood forecasting using a rainfall-runoff model and an artificial neural network. In this method, in addition to the rainfall depth, observed discharges are also used to update the rainfall threshold curves for real-time soil moisture and rainfall temporal and spatial patterns. The method was tested on the Walnut Gulch watershed with a 50-min time of concentration for selected historical rainfall events. It was shown that applying the proposed updatin...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.