Abstract

Exciton diffusion in organic materials provides the operational basis for functioning of such devices as organic solar cells and light-emitting diodes. Here we track the exciton diffusion process in organic semiconductors in real time with a novel technique based on femtosecond photoinduced absorption spectroscopy. Using vacuum-deposited C_{70} layers as a model system, we demonstrate an extremely high diffusion coefficient of D≈3.5×10^{-3} cm^{2}/s that originates from a surprisingly low energetic disorder of <5 meV. The experimental results are well described by the analytical model and supported by extensive MonteCarlo simulations. The proposed noninvasive time-of-flight technique is deemed as a powerful tool for further development of organic optoelectronic components, such as simple layered solar cells, light-emitting diodes, and electrically pumped lasers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call