Abstract

We have developed the method of picosecond Laue crystallography and used this capability to probe ligand dynamics in tetrameric R-state hemoglobin (Hb). Time-resolved, 2Å-resolution electron density maps of photolyzed HbCO reveal the time-dependent population of CO in the binding (A) and primary docking (B) sites of both α and β subunits from 100ps to 10μs. The proximity of the B site in the β subunit is about 0.25Å closer to its A binding site, and its kBA rebinding rate (∼300μs−1) is six times faster, suggesting distal control of the rebinding dynamics. Geminate rebinding in the β subunit exhibits both prompt and delayed geminate phases. We developed a microscopic model to quantitatively explain the observed kinetics, with three states for the α subunit and four states for the β subunit. This model provides a consistent framework for interpreting rebinding kinetics reported in prior studies of both HbCO and HbO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call