Abstract
Partially automated robotic systems, such as camera holders, represent a pivotal step towards enhancing efficiency and precision in surgical procedures. Therefore, this paper introduces an approach for real-time tool localization in laparoscopy surgery using convolutional neural networks. The proposed model, based on two Hourglass modules in series, can localize up to two surgical tools simultaneously. This study utilized three datasets: the ITAP dataset, alongside two publicly available datasets, namely Atlas Dione and EndoVis Challenge. Three variations of the Hourglass-based models were proposed, with the best model achieving high accuracy (92.86%) and frame rates (27.64 FPS), suitable for integration into robotic systems. An evaluation on an independent test set yielded slightly lower accuracy, indicating limited generalizability. The model was further analyzed using the Grad-CAM technique to gain insights into its functionality. Overall, this work presents a promising solution for automating aspects of laparoscopic surgery, potentially enhancing surgical efficiency by reducing the need for manual endoscope manipulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.