Abstract

Advanced pressurized water reactors are the main part of a new generation of nuclear power plant projects under development that provide cost-effective power production for various needs (Yemelyanov et al. 1982, Klimov 2002, Boyko et al. 2005, Baklushin 2011, Bays et al. 2019, Nuclear Technology Review 2019). The innovative technologies are aimed at improving the safety and reliability as well as at reducing the cost of NPPs. At the same time, improvements in design, technological and layout solutions are focused primarily on the reactor core. Assessments of the efficiency of these improvements are preceded by numerical simulations of the processes in the core, in particular heat generation and sink, with account for the difference between the study object and the standard version tested in operational practice. The authors of the article propose a method for calculating the temperature field in the core of a heterogeneous reactor (using the example of a pressurized water reactor), which makes it possible to quickly assess the level of temperature safety of various changes in the core and has the necessary speed for analyzing transients in real time. This method is based on the energy equation for an equivalent homogeneous core in the form of a heat equation that takes into account the main features of the simulated heterogeneous structure. The procedure for recovering the temperature field of a heterogeneous reactor uses the analytical relation obtained in this work for the heat sink function, taking into account inter-fuel element heat leakage losses. Calculations of temperature fields in the model of the PWR type reactor (The Westinghouse Pressurized Water Reactor Nuclear Plant 1984) were carried out in stationary and transient operating modes. The calculation results were compared with the results of CFD simulation. The area of competing use of the temperature field recovery method was indicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.