Abstract

IoT applications have become a pillar for enhancing the quality of life. However, the increasing amount of data generated by IoT devices places pressure on the resources of traditional cloud data centers. This prevents cloud data centers from fulfilling the requirements of IoT applications, particularly delay-sensitive applications. Fog computing is a relatively recent computing paradigm that extends cloud resources to the edge of the network. However, task scheduling in this computing paradigm is still a challenge. In this study, a semidynamic real-time task scheduling algorithm is proposed for bag-of-tasks applications in the cloud–fog environment. The proposed scheduling algorithm formulates task scheduling as a permutation-based optimization problem. A modified version of the genetic algorithm is used to provide different permutations for arrived tasks at each scheduling round. Then, the tasks are assigned, in the order defined by the best permutation, to a virtual machine, which has sufficient resources and achieves the minimum expected execution time. A conducted optimality study reveals that the proposed algorithm has a comparative performance with respect to the optimal solution. Additionally, the proposed algorithm is compared with first fit, best fit, the genetic algorithm, and the bees life algorithm in terms of makespan, total execution time, failure rate, average delay time, and elapsed run time. The experimental results show the superiority of the proposed algorithm over the other algorithms. Moreover, the proposed algorithm achieves a good balance between the makespan and the total execution cost and minimizes the task failure rate compared to the other algorithms.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.