Abstract
In this paper, real-time system identification of an unmanned aerial vehicle (UAV) based on multiple neural networks is presented. The UAV is a multi-input multi-output (MIMO) nonlinear system. Models for such MIMO system are expected to be adaptive to dynamic behaviour and robust to environmental variations. This task of accurate modelling has been achieved with a multi-network architecture. The multi-network with dynamic selection technique allows a combination of online and offline neural network models to be used in the architecture where the most suitable outputs are selected based on a given criterion. The neural network models are based on the autoregressive technique. The online network uses a novel training scheme with memory retention. Flight test validation results for online and offline models are presented. The multi-network dynamic selection technique has been validated on real-time hardware in the loop (HIL) simulation and the results show the superiority in performance compared to the individual models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.