Abstract

A real-time synthesis model of wind instruments sounds, based upon a classical physical model, is presented. The physical model describes the nonlinear coupling between the resonator and the excitor through the Bernoulli equation. While most synthesis methods use wave variables and their sampled equivalent in order to describe the resonator of the instrument, the synthesis model presented here uses sampled versions of the physical variables all along the synthesis process, and hence constitutes a straightforward digital transposition of each part of the physical model. Moreover, the resolution scheme of the problem (i.e., the synthesis algorithm) is explicit and all the parameters of the algorithm are expressed analytically as functions of the physical and the control parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.