Abstract

SummaryThe detection of ambiguous objects, although challenging, is of great importance for any surveillance system and especially for an unmanned aerial vehicle, where the measurements are affected by the great observing distance. Wildfire outbursts and illegal migration are only some of the examples that such a system should distinguish and report to the appropriate authorities. More specifically, Southern European countries commonly suffer from those problems due to the mountainous terrain and thick forests that contain. Unmanned aerial vehicles like the “Hellenic Civil Unmanned Air Vehicle” project have been designed to address high‐altitude detection tasks and patrol the borders and woodlands for any ambiguous activity. In this paper, a moment‐based blob detection approach is proposed that uses the thermal footprint obtained from single infrared images and distinguishes human‐ or fire‐sized and shaped figures. Our method is specifically designed so as to be appropriately integrated into hardware acceleration devices, such as General Purpose Computation on Graphics Processing Units (GPGPUs) and field programmable gate arrays, and takes full advantage of their respective parallelization capabilities succeeding real‐time performances and energy efficiency. The timing evaluation of the proposed hardware accelerated algorithm's adaptations shows an achieved speedup of up to 7 times, as compared to a highly optimized CPU‐only based version.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.