Abstract

We present a range-gated camera system designed for real-time (10Hz) 3D estimation underwater. The system uses a fast-shutter CMOS sensor (1280×1024) customized to facilitate gating with 1.67ns (18.8cm in water) delay steps relative to the triggering of a solid-state actively Q-switched 532nm laser. A depth estimation algorithm has been carefully designed to handle the effects of light scattering in water, i.e., forward and backward scattering. The raw range-gated signal is carefully filtered to reduce noise while preserving the signal even in the presence of unwanted backscatter. The resulting signal is proportional to the number of photons that are reflected during a small time unit (range), and objects will show up as peaks in the filtered signal. We present a peak-finding algorithm that is robust to unwanted forward scatter peaks and at the same time can pick out distant peaks that are barely higher than peaks caused by sensor and intensity noise. Super-resolution is achieved by fitting a parabola around the peak, which we show can provide depth precision below 1cm at high signal levels. We show depth estimation results when scanning a range of 8m (typically 1-9m) at 10Hz. The results are dependent on the water quality. We are capable of estimating depth at distances of over 4.5 attenuation lengths when imaging high albedo targets at low attenuation lengths, and we achieve a depth resolution (σ) ranging from 0.8 to 9cm, depending on signal level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.