Abstract
Limits on the storage space or the computation time restrict the applicability of model predictive controllers (MPC) in many real problems. Currently available methods either compute the optimal controller online or derive an explicit control law. In this paper we introduce a new approach combining the two paradigms of explicit and online MPC to overcome their individual limitations. The algorithm computes a piecewise affine approximation of the optimal solution that is used to warm-start an active set linear programming procedure. A preprocessing method is introduced that provides hard real-time execution, stability and performance guarantees for the proposed controller. By choosing a combination of the quality of the approximation and the number of online active set iterations the presented procedure offers a tradeoff between the warm-start and online computational effort. We show how the problem of identifying the optimal combination for a given set of requirements on online computation time, storage and performance can be solved. Finally, we demonstrate the potential of the proposed warm-start procedure on numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.