Abstract

Real-time studies of submonolayer epitaxy via scattering of fast ions are applicable over a wide range of growth temperatures and deposition rates. Computer simulations of ion trajectories and nucleation theory yield quantitative information on atomistic growth processes. For homoepitaxy of Fe on Fe(100), we deduce island densities, monomer diffusion barrier, cluster binding energies, and post-deposition island ripening. Detailed information on transitions in critical cluster size is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.