Abstract

Gastric acid diffusion and penetration constitute an essential process in the structural breakdown and enzymatic hydrolysis of solid food during digestion. This study aimed to quantify the real-time diffusion and spatial distribution of gastric acids in whey protein isolate (WPI) gels in the presence of 0–0.05 M NaCl during simulated digestion using a wide-field fluorescence microscope. For all the gels regardless of NaCl concentration, the outer surface rapidly developed a near-saturated layer, resulting in a higher normalized gastric acid concentration in the outer layer than in the inner layer. The pH decrease was more significant for the gels at a higher NaCl concentration (i.e., 0.05 M) due to the formation of a more discontinuous and looser network structure that would facilitate acid diffusion into the gel matrix and decrease the gel buffering capacity. Consistently, the effective diffusion coefficient (DA) estimated via the Fick diffusion model was 6.19 × 10−10 m2/s for 0.05 M WPI-RITC gels, significantly higher than 0.015 M (4.46 × 10−10 m2/s) and 0 M (3.54 × 10−10 m2/s) gels. The present study has provided a quantitative understanding of the diffusion process and spatial distribution of gastric acids within the WPI gel matrix in real-time during in vitro gastric digestion as influenced by NaCl concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.