Abstract

The linear dynamic finite element model can be formulated such that the elasticity and viscosity of the elements appear as the parameters in a linear system of equations. The resulting system of equations can be solved directly using singular value decomposition or a similar technique or through defining a quadratic functional. A priori knowledge and regularity measures can be added as equality or inequality constraints. The sensitivity of the inverse problem solution to the displacement noise and model imperfections are tested in simulations, where the parameters were successfully reconstructed with a displacement signal-to-noise ratio as low as 20 dB. Also, the viscoelastic parameters have been successfully estimated for a breast phantom with an embedded hard inclusion. The study of the computation speed demonstrates the potential of the new method for real-time implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call