Abstract
Solar power is an important renewable energy resource that plays a pivotal role in replacing fossil fuel generators and lowering carbon emissions. Since sunlight, which is highly dependent on meteorological factors, is highly volatile, the difficulty in collecting real-time data from renewable energy power plants poses a major threat to maintaining the stability of the entire power system in the target area. A high-performance wireless metering modem is required to monitor the renewable energy generation power of the entire target area in real-time. However, installing such devices on all sites is expensive, so we propose a system that uses deep learning to estimate the generation power of a target site based on the power generations of some sample sites. We use clustering and distance-based sampling to extract a sample site corresponding to each target site and use the recurrent neural network (RNN)-based attention techniques to estimate the generation of target sites from the sample sites. Our experiments show that the proposed RNN-based attention models significantly improve estimation accuracy compared to the baseline model or other deep learning models, irrespective of the number or location of sample sites.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.