Abstract

Prediction of various parameters in the agriculture field using sensors is a significant topic nowadays. However, in many scenarios, the sensor data does not accurately detect the real parameter(/s) in the agriculture field. The sensor data may vary due to various external factors, whereas the real parameters don’t vary too much for a particular agriculture field. The present work introduces a modified neural network approach to predict real agricultural parameters from sensor data with accuracy caused by several external factors and demonstrates enhanced predictive accuracy and adaptability. The neural network takes the sensor data as input in various weather conditions and tries to find out the original real parameters of that sensor data. The real-time sensor data was collected from multiple agricultural sites. The results demonstrated high predictive accuracy, with the neural network outperforming traditional statistical methods in forecasting soil moisture and other vital variables. Additionally, the model’s ability to generalize across different environmental conditions enhances its applicability in various crop management scenarios. The study concludes that neural networks hold significant potential for improving the efficiency of smart agriculture systems by providing timely, data driven insights for farmers and agronomists. Further research will explore the integration of deep learning models and edge computing to enhance scalability and realtime responsiveness in field applications. The aforementioned research highlights the significance of NPK sensors in sustainable farming methods, namely in enabling accurate nutrient management via real-time data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.