Abstract

This paper deals with the control and observation of an induction motor using a sliding-mode technique. The authors' aim is to regulate the speed and the square of the rotor flux magnitude to specified references. Assuming that all the states are measured, sliding surfaces are proposed within a sliding-mode control framework. Then, the stator voltages are derived such that the sliding surfaces are asymptotically attractive since, in practice, the rotor fluxes are not usually measurable, a sliding-mode observer is derived to estimate the rotor fluxes. Furthermore, it is shown that their observer is robust against modeling uncertainties and measurement noise. To illustrate their purpose, they present experimental results for a 0.37-kW induction motor obtained on a digital-signal-processor-based system (TMS 320C31/40 MHz). The experimental results show that the proposed control system is robust against rotor resistance variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call