Abstract
Due to the growing global adoption of electric vehicles (EVs), there is a pressing demand for the development of charging infrastructure that offers enhanced performance while reducing the charging time of EVs. Combining innovative fast and smart charging technologies can result in cost-efficient charging solutions, optimized energy exploitation, and reduced charging time for EVs. This paper proposes a new design of a smart and fast charger for EV batteries. The charger is made of a PFC-based Vienna Rectifier (VR) and an isolated Dual Active Bridge (DAB) converter. The proposed charger enables intelligent data flow between the battery and the charger thanks to the Controller Area Network (CAN) communication employed by the CHAdeMO charging protocol. To validate the effectiveness and feasibility of the proposed charger, the results of real-time simulations performed on RT-LAB platform, from OPAL-RT are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.