Abstract

Abstract Background Thermal ablation is a widely used minimally invasive treatment modality for different cancers. However, lack of a real-time imaging system for accurate evaluation of the procedure is one of the reasons of local recurrences. Shear waves elastography (SWE) is a new ultrasound (US) imaging modality to quantify tissue stiffness. The aim of the study was to assess the feasibility and accuracy of US elastography for quantitative monitoring of thermal ablation and to determine the elasticity threshold predictive of coagulation necrosis. Methods A total of 29 in vivo thermal lesions were performed in pig livers with radiofrequency system. SWE and B-mode images were acquired simultaneously. Liver elasticity was quantified by using SWE data and expressed in kilopascal. After the procedure, pathologic analysis of treated tissues was compared with US images. The sensitivity and positive predictive value of the SWE maps of tissue elasticity were calculated and compared with the boundaries of the pale coagulation necrosis areas found at pathology. Results The liver mean elasticity values before and after thermal therapy were 6.4 ± 0.3 and 38.1 ± 2.5 kPa, respectively (P 20 kPa that actually developed coagulation necrosis) was 0.83. Conclusions Tissue areas with coagulation necrosis are significantly stiffer than the surrounding tissue. SWE permits the real-time detection of coagulation necrosis produced by radiofrequency and could potentially be used to monitor US-guided thermal ablation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.