Abstract

The real-time shape evolution of nanoimprinted polymer patterns is measured as a function of annealing time and temperature using critical dimension small-angle X-ray scattering (CD-SAXS). Periodicity, line width, line height, and sidewall angle are reported with nanometer resolution for parallel line/space patterns in poly(methyl methacrylate) (PMMA) both below and above the bulk glass transition temperature (T(G)). Heating these patterns below T(G) does not produce significant thermal expansion, at least to within the resolution of the measurement. However, above T(G) the fast rate of loss in pattern size at early times transitions to a reduced rate in longer time regimes. The time-dependent rate of polymer flow from the pattern into the underlying layer, termed pattern "melting", is consistent with a model of elastic recovery from stresses induced by the molding process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.