Abstract

To extract the desired non-stationary sound field generated by a target source in the presence of disturbing sources, a real-time sound field separation method with pressure and particle acceleration measurements is proposed. In this method, the pressure and particle acceleration signals at a time instant are first measured on one measurement plane, where the particle acceleration is obtained by the finite difference approximation with the aid of an auxiliary measurement plane; then, the desired pressure signal generated by the target source at the same time instant can be extracted in a timely manner, by a simple superposition of the measured pressure and the convolution between the measured particle acceleration and the derived impulse response function. Thereby, the proposed method possesses a significant feature of real-time separation of non-stationary sound fields, which provides the potential to in situ analyze the radiation characteristics of a non-stationary source. The proposed method was examined through numerical simulation and experiment. Results demonstrated that the proposed method can not only extract the desired time-evolving pressure signal generated by the target source at any space point, but can also obtain the desired spatial distribution of the pressure field generated by the target source at any time instant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call