Abstract

This paper proposes a real-time semantics-driven infrared and visible image fusion framework (RSDFusion). A novel semantics-driven image fusion strategy is introduced in image fusion to maximize the retention of significant information of the source image in the fusion image. First, a semantically segmented image of the source image is obtained using a pre-trained semantic segmentation model. Second, masks of significant targets are obtained from the semantically segmented image, and these masks are used to separate the targets in the source and fusion images. Finally, the local semantic loss of the separation target is designed and combined with the overall structural similarity loss of the image to instruct the network to extract appropriate features to reconstruct the fusion image. Experimental results show that the RSDFusion proposed in this paper outperformed other comparative methods on both subjective and objective evaluation of public datasets and that the main target of the source image is better preserved in the fusion image.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.