Abstract

With the increasing demand of autonomous systems, pixelwise semantic segmentation for visual scene understanding needs to be not only accurate but also efficient for potential real-time applications. In this paper, we propose Context Aggregation Network, a dual branch convolutional neural network, with significantly lower computational costs as compared to the state-of-the-art, while maintaining a competitive prediction accuracy. Building upon the existing dual branch architectures for high-speed semantic segmentation, we design a high resolution branch for effective spatial detailing and a context branch with light-weight versions of global aggregation and local distribution blocks, potent to capture both long-range and local contextual dependencies required for accurate semantic segmentation, with low computational overheads. We evaluate our method on two semantic segmentation datasets, namely Cityscapes dataset and UAVid dataset. For Cityscapes test set, our model achieves state-of-the-art results with mIOU of 75.9%, at 76 FPS on an NVIDIA RTX 2080Ti and 8 FPS on a Jetson Xavier NX. With regards to UAVid dataset, our proposed network achieves mIOU score of 63.5% with high execution speed (15 FPS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.