Abstract

This paper presents an approach to model, design and verify scenarios of real-time systems used in the scheduling and global coordination of batch systems. The initial requirements of a system specified with sequence diagrams are translated into a single p-time Petri net model representing the global behavior of the system. For the Petri net fragments involved in conflicts, symbolic production and consumption dates assigned to tokens are calculated based on the sequent calculus of linear logic. These dates are then used for off-line conflict resolution within a token player algorithm used for scenario verification of real-time specifications and which can be seen as a simulation tool for UML interaction diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call