Abstract

Changes in surface topography of anodically dissolving surfaces have been examined by scanning tunneling microscopy (STM). Since aqueous solutions present the possibility of faradaic reactions during the STM examination, their effects on the tunneling current are discussed. When copper is anodically dissolved in the Tafel region, the initial mechanically polished surface (0.05 mm Al 2O 3) is known to roughen and to form large scale (mm) facets of low index hkl planes. Real time STM shows, in addition, that the crystalline faces of the facet actually smoothen on a finer scale (10 and 100 nm) while the facets are forming. When Cu is selectively dissolved from Cu-Au alloy, pits (10 to 100 2 nm diameter) and eventual porosity form. The spacing and diameter of the pits obtained by STM are in good agreement with scanning electron microscopy results. As expected, however. STM under estimates the depth of the pits except at the very initial stages of surface roughening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.