Abstract

Correlation filter (CF) has been widely used in tracking tasks due to its simplicity and high efficiency. However, conventional CF-based trackers fail to handle the scale variation that occurs when the targeted object is moving, which is one of the most notable unsolved problems of visual object tracking. In this paper, we propose a scalable visual tracking algorithm based on kernelized correlation filters, referred to as quadrangle kernelized correlation filters (QKCF). Unlike existing complicated scalable trackers that either perform the correlation filtering operation multiple times or extract many candidate windows at various scales, our tracker intends to estimate the scale of the object based on the positions of its four corners, which can be detected using a new Gaussian training output matrix within one filtering process. After obtaining four peak values corresponding to the four corners, we measure the detection confidence of each part response by evaluating its spatial and temporal smoothness. On top of it, a weighted Bayesian inference framework is employed to estimate the final location and size of the bounding box from the response matrix, where the weights are synchronized with the calculated detection likelihoods. Experiments are performed on the OTB-100 data set and 16 benchmark sequences with significant scale variations. The results demonstrate the superiority of the proposed method in terms of both effectiveness and robustness, compared with the state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call