Abstract

The aim of the present study was to develop a real-time reverse-transcription polymerase chain reaction (RT-PCR) methodology for the quantification of thiopurine methyltransferase (TPMT) gene expression in whole blood and compare it with the TPMT enzyme activity measured in red blood cells. TPMT gene expression was quantified relative to the housekeeping gene cyclophilin (huCYC) and expressed as a TPMT/huCYC ratio. TPMT activity in red blood cells was determined by measuring the formation rate of 6-(14)C-methylmercaptopurine from 6-MP using S-adenosyl-L-((14)C-methyl)-methionine as methyl donor. Thirty-nine individuals were included in the study. A cut-off value of 9 U/ml pRBC was used to distinguish intermediate TPMT enzyme activity from high TPMT enzyme activity. Sequencing of the real-time RT-PCR amplicon proved that the method was specific for the TPMT cDNA, without co-amplification of the highly similar TPMT processed pseudogene. The intra-assay coefficients of variation (CVs), as determined by the threshold cycle, were 0.7% for TPMT and 0.5% for huCYC. The interassay CVs were 1.5% for TPMT and 4.0% for huCYC. The intra- and interassay CVs, as determined by the TPMT/huCYC ratio, were 8.6% and 25%, respectively. There was a statistically significant correlation between TPMT enzyme activity and mRNA level in blood cells from individuals with an enzyme activity above 9 U/ml pRBC (r(s)=0.66, P=0.0001). However, we did not find any statistically significant correlation in individuals with lower enzyme activity or when analysing the whole population. We present a specific and robust real-time RT-PCR method for quantifying TPMT gene expression. The method may be used for studies on TPMT gene regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.