Abstract

Electric vehicles (EVs) currently face formidable challenges in promotion, i.e., short driving ranges, long charging times, and few charging stations, thereby limiting their acceptability to taxi drivers. Leveraging massive-scale taxi GPS trajectory data, we present a novel real-time route recommendation system for electric taxi (ET) drivers. Taxi travel knowledge, including the probability of picking up passengers and the distribution of destinations, is learned from the raw GPS trajectories. Considering the cascading effect of route decision making, consecutive ET actions are modeled with an action tree. The corresponding expected net revenue is estimated based on the learned knowledge. A prototype online system is developed for providing route recommendations, e.g., when to go to a charging station or cruise on certain roads. An experiment in Shenzhen demonstrates that the average daily net revenue of ET drivers is better than those of 76.2% of gasoline taxi drivers. The presented approach not only increases the revenue of ET drivers in the short term but also improves the viability of EVs in the long run.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.