Abstract
This paper proposes a road-slope estimation algorithm to improve the performance and efficiency of intelligent vehicles. The algorithm integrates three types of road-slope measurements from a GPS receiver, automotive onboard sensors, and a longitudinal vehicle model. The measurement integration is achieved through a probabilistic data association filter (PDAF) that combines multiple measurements into a single measurement update by assigning statistical probability to each measurement and by removing faulty measurement via the false-alarm function of the PDAF. In addition to the PDAF, an interacting multiple-model filter (IMMF) approach is applied to the slope estimation algorithm to allow adaptation to various slope conditions. The model set of the IMMF is composed of a constant-slope road model (CSRM) and a constant-rate slope road model (CRSRM). The CSRM assumes that the slope of the road is always constant, and the CRSRM assumes that the slope of the road changes at a constant rate. The IMMF adapts the road-slope model to the driving conditions. The developed algorithm is verified and evaluated through experimental and case studies using a real-time embedded system. The results show that the performance and efficiency of the road-slope estimation algorithm is accurate and reliable enough for intelligent vehicle applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.