Abstract

A novel approach for relative and absolute localization of wireless sensor nodes using a potential field method is presented. The main idea of our work is to develop relative and absolute localization algorithms for the position estimate of stationary unattended ground sensor (UGS) nodes using a potential field method. A dynamical model is derived for each sensor node to estimate the relative and absolute position estimates under the influence of a certain fictitious virtual force. In the algorithm the sensor nodes do not move physically, but a virtual motion is carried out to generate optimal position estimates. The convergence of the estimator system to a least squares solution is guaranteed using Lyapunov theory. Separate control algorithms for relative and absolute localization are developed which guarantee the convergence of the position estimates. The relative localization algorithm assumes that distance (i.e. range) measurements between UGS nodes are available and for absolute localization algorithm, uninhabited aerial vehicles (UAV) are available with on board GPS such that they have absolute position information together with range measurement information. In the relative localization algorithm the UGS nodes are localized with respect to an internal co-ordinate frame. In absolute localization the UGS nodes are localized with respect to the known absolute position of UAV in the air---ground network. The effectiveness of the control algorithm is highlighted by the real time implementation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.