Abstract

In this paper, the fuzzy neural network model is studied, the real-time regulation model of physical training intensity is analyzed and a real-time regulation system based on a fuzzy neural network is designed. The real-time, accurate and effective regulation of the physiological load intensity in the body of the exerciser is consistent with the predetermined goals of the training program. In this paper, we propose an RBF neural network, combined with the plan and demand of physical training operation situation sensing, and considering that most of the biological training operation data is fuzzy, this paper connects a fuzzy logic inference system and a neural network and proposes a network operation situation sensing model based on an RBF neural network structure. The RBF neural network and the traditional fuzzy neural network are compared. The experiments prove that this paper’s fuzzy neural network model has a faster training speed. In this paper, we use time-realistic control equipment to monitor the physical training process of athletes so that we can grasp the training situation of athletes in real-time and ensure that athletes can achieve better training results by changing training methods and changing training loads in time for those athletes who cannot reach their sports goals. In the process of physical fitness training monitoring, an effective monitoring of training, time-accurate regulation monitoring has the advantage of timely feedback on the training situation. This model has a better convergence effect during exercise and a higher accuracy of posture prediction during testing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call