Abstract

A two-step strategy is developed for real-time trajectory planning of a hypersonic vehicle (HV) in the reentry phase. The first step generates the optimal trajectory for the HV using a recently proposed fuzzy multiobjective transcription method. In the second step, the optimally generated trajectories are utilized to train a deep neural network (DNN), which is then acted as the optimal command generator in real time. A detailed simulation study is carried out to verify the effectiveness and real-time applicability of the proposed integrated design. The DNN-driven controller is further compared against other optimization-based techniques existing in relative works. Moreover, extension works on the real-time trajectory planning of a six-degree-of-freedom HV model are performed. The results confirm the feasibility and reliability of applying the proposed method for the planning of the HV entry flight path in real time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.