Abstract

Uncovering spatial representations from large-scale ensemble spike activity in specific brain circuits provides valuable feedback in closed-loop experiments. We develop a graphics processing unit (GPU)-powered population-decoding system for ultrafast reconstruction of spatial positions from rodents' unsorted spatiotemporal spiking patterns, during run behavior or sleep. In comparison with an optimized quad-core central processing unit (CPU) implementation, our approach achieves an ∼20- to 50-fold increase in speed in eight tested rat hippocampal, cortical, and thalamic ensemble recordings, with real-time decoding speed (approximately fraction of a millisecond per spike) and scalability up to thousands of channels. Byaccommodating parallel shuffling in real time (computation time <15ms), our approach enables assessment of the statistical significance of online-decoded "memory replay" candidates during quiet wakefulness or sleep. This open-source software toolkit supports the decoding of spatial correlates or content-triggered experimental manipulation in closed-loop neuroscience experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.