Abstract

Quantitative real-time polymerase chain reaction (qrtPCR) is widely used as a research and diagnostic tool. Notwithstanding its many powerful features, the method is limited in the degree of multiplexing to about 6 due to spectral overlap of the available fluorophores. A new method is presented that allows quantitative amplification detection at higher multiplexing by the integration of amplification in solution and monitoring via hybridization to a microarray in real-time. This method does not require any manipulation of the PCR product and runs in a single closed chamber. Employing labeled primers, one of the main challenges is to measure surface signals against a high fluorescence background from solution. A compact, confocal scanner is employed, based on miniaturized optics from DVD technology and combined with a flat thermocycler for simultaneous scanning and heating. The feasibility of this method is demonstrated in singleplex with an analytical sensitivity comparable to routine qrtPCR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.