Abstract

An optical readout technique has been developed for real-time monitoring of the profile of microcantilever arrays for sensing applications. The technique is based on the automated two-dimensional scanning of a laser beam by using voice-coil actuators. Cantilever profiles are obtained with subnanometer resolution and a processing speed of about ten cantilevers per second. The technique is applied for real-time monitoring of the adsorption of the alkylthiol mercaptohexanol in an aqueous environment by using an array of five microcantilevers. Molecular adsorption produces a cantilever strain that significantly differs from the Stoney’s model. Main strain changes are strongly located near the cantilever clamping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.