Abstract

Central to many location-based service applications is the task of processing k-nearest neighbor (k-NN) queries over moving objects. Many existing approaches adapt different index structures and design various search algorithms to deal with this problem. In these works, tree-based indexes and grid index are mainly utilized to maintain a large volume of moving objects and improve the performance of search algorithms. In fact, tree-based indexes and grid index have their own flaws for supporting processing k-NN queries over an ocean of moving objects. A tree-based index (such as R-tree) needs to constantly maintain the relationship between nodes with objects continuously moving, which usually causes a high maintenance cost. Grid index is widely used to support k-NN queries over moving objects, but the approaches based on grid index almost require an uncertain number of iterative calculations, which makes the performance of these approaches not predictable. To address this problem, we present a dynamic Strip Rectangle Index (SRI), which can reach a good balance between the maintenance cost and the performance of supporting k-NN queries over moving objects. SRI supplies two different index granularities that makes it better adapt to handle different data distributions than existing index structures. Based on SRI, we propose a search algorithm called SR-KNN that can rapidly calculate a final region with a filter-and-refine strategy to enhance the efficiency of process k-NN queries, rather than iteratively enlarging the search space like the grid-index-based approaches. Finally, we conduct experiments to fully evaluate the performance of our proposal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.