Abstract
Sustainable energy development requires environment-friendly energy-generating methods. Pricing system constraints influence the efficient use of energy resources. Real-Time Pricing (RTP) is theoretically superior to previous pricing systems for allowing demand response (DR) activities. The DR approach has been useful for correcting supply–demand imbalances as technology has evolved. There are several systems for determining and controlling the DR. However, most of these solutions are unable to control rising demand or forecast prices for future time slots. This research provides a Real-Time Pricing DR model for energy management based on deep learning, where the learning framework is trained on demand response and real-time pricing. The study data in this article were taken from the Australian Energy Market Operator (AEMO), and the learning framework was trained over 17 years of data to forecast the real future energy price and demand. To investigate the suggested deep learning-based dynamic pricing strategy, two prediction instances are addressed: actual–predicted demand and actual–predicted price. We estimated pricing and demand outcomes using long short-term memory (LSTM), which were then greatly improved by architectural changes in the model. The findings showed that the suggested model is suitable for energy management in terms of demand and price prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.