Abstract
Since doses to skin of patients from fluoroscopically-guided interventional procedures can be very high, real-time monitoring of skin dose is important for both patient management and quality control. The use of a scintillation detector, placed on the X-ray port to measure potential skin dose, was investigated, focusing on the uncertainties related to the technique. Sources of uncertainty include performance characteristics of the dosemeter, errors in calibration, patient set-up and changes during the procedure. Some of the largest sources of error include uncertainty in source-to-skin distance, heel effect, difficulty in identifying the area of skin principally exposed, calibration error, energy dependence of the dosemeter and the dose rate dependence of the monitor. This technique is found to be beneficial for radiation management, but users must be cognizant of the potential errors of the method and the limitations that these place on quality control and patient management. Knowing the limitations and minimizing the sources of error enhance the utility of the technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.