Abstract

In this paper, we show that applying a linear transformation---represented by a 3 x 3 matrix---to the direction vectors of a spherical distribution yields another spherical distribution, for which we derive a closed-form expression. With this idea, we can use any spherical distribution as a base shape to create a new family of spherical distributions with parametric roughness, elliptic anisotropy and skewness. If the original distribution has an analytic expression, normalization, integration over spherical polygons, and importance sampling, then these properties are inherited by the linearly transformed distributions. By choosing a clamped cosine for the original distribution we obtain a family of distributions, which we call Linearly Transformed Cosines (LTCs), that provide a good approximation to physically based BRDFs and that can be analytically integrated over arbitrary spherical polygons. We show how to use these properties in a realtime polygonal-light shading application. Our technique is robust, fast, accurate and simple to implement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.