Abstract

A robust pinch detection algorithm which can be implemented in a cheap microprocessor is proposed for the development of a safety feature in the automotive power window system. To solve the problems caused by the performance degradation of a Hall sensor or real driving situations, the proposed algorithm makes use of the H∞ state estimation technique. The motivation of this approach comes from the advantage that the H∞ filter can minimize or bound the worst-case estimation error energy for all bounded energy disturbances. Herein, the pinch torque rate estimator is derived from applying the steady-state H∞ filter to the augmented model, which includes the motor dynamics and an additional torque rate state. Then, to redesign an appropriate estimator for real-time implementation, the torque rate estimate can be calculated more efficiently than the previous method [1]. Experimental results verify that, with a small amount of computation, the proposed pinch detection algorithm provides fast pinch detection performance superior to the existing method. Furthermore, it guarantees robustness against the worst-case measurement noises.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call