Abstract

A recent advancement in the field of neuromodulation is to adapt stimulation parameters according to pre-specified biomarkers tracked in real-time. These markers comprise short and transient signal features, such as bursts of elevated band power. To capture these features, instantaneous measures of phase and/or amplitude are employed, which inform stimulation adjustment with high temporal specificity. For adaptive neuromodulation it is therefore necessary to precisely estimate a signal's phase and amplitude with minimum delay and in a causal way, i.e. without depending on future parts of the signal. Here we demonstrate a method that utilizes oscillation theory to estimate phase and amplitude in real-time and compare it to a recently proposed causal modification of the Hilbert transform. By simulating real-time processing of human LFP data, we show that our approach almost perfectly tracks offline phase and amplitude with minimum delay and is computationally highly efficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call