Abstract

The construction industry is one of the most dangerous industries in the world due to workers being vulnerable to accidents, injuries and even death. Therefore, how to effectively manage the appropriate usage of personal protective equipment (PPE) is an important research issue. In this study, deep learning is applied to the PPE inspection model to verify whether construction workers are equipped in accordance with the regulations, and this is expected to reduce the probability of related occupational disasters caused by the inappropriate use of PPE. The method is based on the YOLOv3, YOLOv4 and YOLOv7 algorithms to detect worker’s helmets and high-visibility vests from images or videos in real time. The model was trained on a new PPE dataset collected and organized by this study; the dataset contains 11,000 images and 88,725 labels. According to the test results, can achieve a 97% mean average precision (mAP) and 25 frames per second (FPS). The research result shows that the detection and counting data in this method have performed well and can be applied to the real-time PPE detection of workers at the construction job site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.