Abstract

ABSTRACTPotomac horse fever (PHF) is an acute and potentially fatal enterotyphlocolitis of horses with clinical signs that include anorexia, fever, diarrhea, and laminitis. Its incidence is increasing despite a commercially available vaccine. PHF is caused by Neorickettsia risticii, and the recently rediscovered and classified N. findlayensis. PHF diagnosis is currently accomplished using serology or nested PCR. However, both methods cannot distinguish the two Neorickettsia species that cause PHF. Further, the current N. risticii real-time PCR test fails to detect N. findlayensis. Thus, in this study, two Neorickettsia species-specific real-time PCR assays based on Neorickettsia ssa2 and a Neorickettsia genus-specific real-time PCR assay based on Neorickettsia 16S rRNA gene were developed. The ssa2 real-time PCR tests differentiated N. findlayensis from N. risticii in the field samples for which infection with either species had been verified using multiple other molecular tests and culture isolation, and the 16S rRNA gene real-time PCR detected both Neorickettsia species in the samples. These tests were applied to new field culture isolates from three Canadian provinces (Alberta, Quebec, Ontario) and Ohio as well as archival DNA samples from suspected PHF cases to estimate the prevalence of N. findlayensis in different geographic regions. The results suggest that N. findlayensis frequently causes PHF in horses in Alberta and Quebec. The development of these tests will allow rapid, sensitive, and specific diagnosis of horses presenting with clinical signs of PHF. These tests will also enable rapid and targeted treatment and help develop broad-spectrum vaccines for PHF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.