Abstract

Forecasting the burden of COVID-19 has been impeded by limitations in data, with case reporting biased by testing practices, death counts lagging far behind infections, and hospital census reflecting time-varying patient access, admission criteria, and demographics. Here, we show that hospital admissions coupled with mobility data can reliably predict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission rates and healthcare demand. Using a forecasting model that has guided mitigation policies in Austin, TX, we estimate that the local reproduction number had an initial 7-d average of 5.8 (95% credible interval [CrI]: 3.6 to 7.9) and reached a low of 0.65 (95% CrI: 0.52 to 0.77) after the summer 2020 surge. Estimated case detection rates ranged from 17.2% (95% CrI: 11.8 to 22.1%) at the outset to a high of 70% (95% CrI: 64 to 80%) in January 2021, and infection prevalence remained above 0.1% between April 2020 and March 1, 2021, peaking at 0.8% (0.7-0.9%) in early January 2021. As precautionary behaviors increased safety in public spaces, the relationship between mobility and transmission weakened. We estimate that mobility-associated transmission was 62% (95% CrI: 52 to 68%) lower in February 2021 compared to March 2020. In a retrospective comparison, the 95% CrIs of our 1, 2, and 3 wk ahead forecasts contained 93.6%, 89.9%, and 87.7% of reported data, respectively. Developed by a task force including scientists, public health officials, policy makers, and hospital executives, this model can reliably project COVID-19 healthcare needs in US cities.

Highlights

  • Forecasting the burden of COVID-19 has been impeded by limitations in data, with case reporting biased by testing practices, death counts lagging far behind infections, and hospital census reflecting time-varying patient access, admission criteria, and demographics

  • Deaths tend to lag the other variables by several weeks; the three healthcare variables—-hospital admissions, hospital census, and ICU census—-are smoother than case counts, with multiweek hospital stays causing the hospital census and ICU census to decline more slowly following peaks

  • Assuming that the goal of surveillance is to anticipate COVID19 healthcare demand, we evaluate all variables in terms of the timing and strength of their correlation with COVID-19 healthcare usage indicators such as hospital and ICU census (Fig. 1B)

Read more

Summary

Introduction

Forecasting the burden of COVID-19 has been impeded by limitations in data, with case reporting biased by testing practices, death counts lagging far behind infections, and hospital census reflecting time-varying patient access, admission criteria, and demographics. We show that hospital admissions coupled with mobility data can reliably predict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission rates and healthcare demand. Developed by a task force including scientists, public health officials, policy makers, and hospital executives, this model can reliably project COVID-19 healthcare needs in US cities. As the COVID-19 pandemic emerged in the United States in early 2020, policy makers were forced to make decisions with limited information about the natural history, local prevalence, and transmission of the causative virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]). We introduce a robust model for predicting COVID-19 transmission and hospitalizations based on COVID-19 hospital admissions and cell phone mobility data This approach was developed by a municipal COVID-19 task force in Austin, TX, which includes civic leaders, public health officials, healthcare executives, and scientists. The model was incorporated into a dashboard providing daily healthcare forecasts that have raised public awareness, guided the city’s staged alert system to prevent unmanageable ICU surges, and triggered the launch of an alternative care site to accommodate hospital overflow

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.