Abstract

To implement optimization and control on gold cyanidation leaching process (GCLP), it is an important prerequisite to establish an accurate process model. In this paper, a hybrid model in serial structure was proposed, where a first-principle model based on mass conservation equations was presented to describe the basic process behavior and its unknown kinetic reaction rates were predicted using BP ANN models without any structures considered. The proposed serial hybrid model had been applied to the prediction of gold recovery of the GCLP in a gold treatment plant. The results indicate that the proposed serial hybrid model has better prediction performance and generalization ability than the pure mechanistic model. To further reduce the effect of prediction error (plant-model mismatch) on real time optimization (RTO), modifier adaptation approach had been investigated and implemented to the GCLP. The result shows that when model mismatches with the actual plant or larger process disturbance occurs, significant reduction of production cost can be actualized iteratively by implementing the proposed adaptive RTO strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.