Abstract

The dominant pathway of radiation damage begins with the ionization of water. Thus far, however, the underlying primary processes could not be conclusively elucidated. Here, we directly study the earliest steps of extreme ultraviolet (XUV)-induced water radiolysis through one-photon excitation of large water clusters using time-resolved photoelectron imaging. Results are presented for H2O and D2O clusters using femtosecond pump pulses centered at 133 or 80 nm. In both excitation schemes, hydrogen or proton transfer is observed to yield a prehydrated electron within 30 to 60 fs, followed by its solvation in 0.3 to 1.0 ps and its decay through geminate recombination on a ∼10-ps time scale. These results are interpreted by comparison with detailed multiconfigurational non-adiabatic ab-initio molecular dynamics calculations. Our results provide the first comprehensive picture of the primary steps of radiation chemistry and radiation damage and demonstrate new approaches for their study with unprecedented time resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.